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Abstract: Drastic declines in insect populations are a vital concern worldwide. Despite widespread
insect monitoring, the significant gaps in the literature must be addressed. Future monitoring
techniques must be systematic and global. Advanced technologies and computer solutions are needed.
We provide here a review of relevant works to show the high potential for solving the aforementioned
problems. Major historical and modern methods of insect monitoring are considered. All major radar
solutions are carefully reviewed. Insect monitoring with radar is a well established technique, but it
is still a fast-growing topic. The paper provides an updated classification of insect radar sets. Three
main groups of insect radar solutions are distinguished: scanning, vertical-looking, and harmonic.
Pulsed radar sets are utilized for all three groups, while frequency-modulated continuous-wave
(FMCW) systems are applied only for vertical-looking and harmonic insect radar solutions. This
work proves the high potential of radar entomology based on the growing research interest, along
with the emerging novel setups, compact devices, and data processing approaches. The review
exposes promising insect monitoring solutions using compact radar instruments. The proposed
compact and resource-effective setups can be very beneficial for systematic insect monitoring.

Keywords: insect radar; conservation; remote sensing; light trap; FMCW radar; UGV

1. Introduction

The massive use of pesticides, intensive land-use, and climate change are sources
of the damaging impact on nature, especially insects [1–4]. Insect conservation attracts
significant worldwide interest in this context [5–11]. It is motivated by the human-caused
global impact, which has resulted in the most remarkable episode of mass extinction since
the loss of the dinosaurs 65 million years ago. In the scope of conservation biology, this
extinction has become more recognizable with recent technological progress.

Researchers warn about the possibility of the extinction of 40% of insects over the next
few decades [12]. About 400 insect species have recently been officially classed as extinct;
some estimate that from 1 to 100 invertebrates species vanish every day [13]. This problem
requires urgent attention not only because of insects’ usefulness as pollinators, pest control,
and nutrient cycling agents but, mainly, because of their right to exist. The manifesto
“World Scientists’ Warning to Humanity” (issued by the Alliance of World Scientists) details
the leading factors that cause insect extinction: habitat loss, degradation, and fragmenta-
tion, the use of polluting and harmful substances, the spread of invasive species, global
climate change, direct overexploitation, and the co-extinction of species dependent on other
species [14]. It appeals for urgent action to close the critical knowledge gaps and curb
insect extinction. Moreover, researchers expect that many pest species (e.g., houseflies and
cockroaches) are likely to boom; it is formulated as a “pests on the rise” problem [12].

While the significant decline in insect numbers (often called “Ecological Armaged-
don”) is apparent and confirmed by many studies [15,16], researchers notice significant
research gaps [17]. They emphasize that such works consider mainly biomass (not species).
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Moreover, sites are not sampled continuously and represent only limited areas. Did-
ham et al. [18] have distinguished seven critical challenges in the interpretation of insect
decline: the establishment of the historical baseline, the representativeness of site selection,
the robustness of time series trend estimation, the mitigation of detection bias effects,
and the ability to account for potential artifacts of density dependence, phenological shifts,
and scale dependence in extrapolation from sample abundance to population-level in-
ference. They have distinguished several opportunities for more creative exploitation
of existing baseline data and have proposed to adopt the latest technological advances
in sampling and novel computational approaches. Addressing the mentioned gaps and
challenges requires significant additional resources. Recent achievements in technologies
and automatizing allows researchers to increase the effectiveness of the resource use and,
more importantly, move the research to a principally new level.

Today, cutting-edge works on insect monitoring mainly utilize non-destructive tech-
nical solutions on the market, such as automatic traps with novel sensors and machine
learning systems. In Reference [19], Lima et al. discuss pest management automatic
systems utilizing pest identification methods based on infrared sensors, audio sensors,
and image-based classification. They presented the different systems available, examples
of applications, and recent developments, including machine learning and the Internet of
Things. Among recent relevant works on technically advanced insect monitoring, we want
to distinguish research on small insects’ vertical motion using millimeter-wavelength radar
and Doppler lidar for insect pest detection [20], migration, and monitoring. Radar and
lidar systems also played a vital role in another recent article on insect pest detection and
migration monitoring [21].

The earlier discussion indicates the high demand for systematic and global solutions.
Among them, we can securely distinguish highly popular, but still enormously growing,
entomology radar systems. This paper aims to review primary insect monitoring techniques
with the main focus on radar technology for entomology purposes. Finally, we propose
novel solutions and recommendations addressing the indicated gaps for future technical
solutions and research.

2. Insect Monitoring Methods

It is a well-known fact that insects play a crucial role in ecosystems [22]. Being small
and active, they remain almost invisible for most observers. A deeper understanding of
ecosystems’ functionality requires a systematic monitoring of insects, including state-of-the-
art and novel solutions. As mentioned earlier, the current monitoring still has significant
gaps that have to be addressed. This section considers promising solutions in terms of
automatization, effectiveness, and cost, thus their having widespread potential.

Medeiros et al. noticed that “insects receive low levels of conservation funding,
likely due to their small size, fluctuating population sizes, and lack of baseline data
necessary to determine if they are threatened with extinction” [23]. They proposed broad
insect monitoring strategies focused on community-based metrics instead of individual
species. That work considered a situation in Hawaii, where insects play a crucial role as
pollinators [24], the primary native consumers of plants (due to the lack of herbivorous
mammals), critical sources of protein for all native forest birds [25], and essential parts of
food webs [26]. They mentioned the most apparent insect conservation difficulty: insects’
tiny size and cryptic life; it is often noticed only after careful observation of an ecosystem.
Moreover, “many insects are nocturnal, or spend all or most of their lives under rocks,
high in the tree canopy, or buried in moss or leaf litter” [23]. The authors noticed the
limited capacity of modern GPS and radio technologies for insect monitoring (excluding
the largest insects).

Due to the lack of information, monitoring should begin from community considera-
tions and accurate assessments of population or species trends for at least a subset of the
native fauna. Continuous collecting and monitoring efforts require the harvesting of criti-
cal information for synthesizing abundance and distribution of invertebrate species [27].
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Basset et al. [28] indicated that broad sampling is the best current monitoring approach
until such datasets can be used to determine whether a smaller subset of taxonomic or
functional groups can be used. Despite this, in some specific cases, monitoring focusing on
single species is required [29].

Moving down from general recommendations to concrete implementations, one can
distinguish an increasing number of pest control works concerning insect monitoring.
The apparent reason for this is that such insects cause the loss of billions of dollars and
14–15% of the world’s crops [30], which motivates the investments to the required research.
In contrast to conservation purposes, concrete results applicable in practice are significant
for pest control. As a result, such works are aimed at mathematical modeling and practical
recommendations; both are very worth utilizing in the conservation realm.

Petrovskii et al. [31] provide an overview of the state-of-the-art mathematical ap-
proaches to insect monitoring for pest control, mainly focusing on random walks, pattern
formation, synchronization, and networks. They distinguish two essential monitoring com-
ponents: data collection and data processing or interpretation. They noticed that trapping is
a standard working method in such work; it enables researchers to estimate the population
density of harmful species at the traps’ positions. The authors considered three scale levels:
a single trap, a single agricultural field comprising several traps, and several fields with
multiple traps. Calculations on the second scale typically utilize the arithmetic average of
local densities, but, as discussed, it becomes ineffective and inaccurate if the distribution is
heterogeneous. Long-distance cross-correlations between the pest abundance in different
fields are called synchronization. Inter-habitat dispersal and the effect of spatially corre-
lated noise are two main synchronization mechanisms. The authors noticed that dispersal
between different habitats could occur through a particular self-organized network, which
can arise due to the interplay between environmental properties. Hence, close fields can be
uncorrelated, but some distant fields can be almost perfectly synchronized. A type of trap
plays a crucial role here. For instance, a trap can be a simple ground hole with a bowl or a
baited trap. The rule of thumb for a trap size says that it is larger by a factor of ∼102.

Insect trapping and, in particular, light trapping are primary methods for insect
monitoring with a long history and a large corpus of relevant research publications and
reviews [32–39]. These works confirm the effectiveness of trapping methods compared to
other methods (e.g., sweeping). Moreover, they show the efficiency and high potential of
light traps. Light traps remain a trending topic leveraging by recent advances in technology.
Figure 1 depicts major proven light trap designs.
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Figure 1. Evolution of light trap proven constructions from a classical schema of the Pennsylvania
light trap (left) to typical construction of modern screen-camera light traps (right).

Today, researchers often combine light traps with cameras and use computer vision,
pattern recognition, artificial intelligence, and machine learning algorithms for data process-
ing. Due to the high economic demand, many such works aim to pest control. In this light,
we want to notice the following relevant works on pest control for different agriculture
types: vegetable [40,41], grass field [42,43], grain [44,45], and orchard [46,47]. The men-
tioned works motivated a paper published by Qing et al. [48]. They developed a light trap
using several light sources, a glass screen, and two cameras. The authors extracted features



Sensors 2021, 21, 1474 4 of 23

from images for each rice pest; then, a support vector machine classifier with a radial basis
kernel function was applied for identifying four species of Lepidoptera rice pests.

In Reference [49], Shimoda and Honda discussed insect reactions to light in the pest
management context. That work comprises significant recent findings that are impor-
tant to researchers working with light traps for insect monitoring. They emphasized
that insects can see the visible light wavelength, which often expands into the ultraviolet
(UV) range invisible to humans. For instance, honeybees’ compound eyes contain three
types of photoreceptor cells with spectral sensitivity peaking in the UV, blue, and green
wavelength ranges. Even though insects have variable light perception, and some are
sensitive to red [50], we can securely say that many insects perceive UV light as a unique
color [51,52]. Shimoda and Honda distinguished several types of insect reaction to artificial
manipulations with the light (phototactic behaviors): attraction or moving toward a light
source [53,54], repulsion or moving away from light [55,56], light adaptation or provoking
daytime behaviors, such as the cessation of movement and settling down [57,58], phase
shift or affecting the timing of the diurnal/nocturnal behavior [59,60], photoperiodicity
or preventing the onset of diapause [61,62], light toxicity or damaging an insect [63,64],
making objects invisible for insects by blocking the UV light [65,66], and, finally, dor-
sal light reaction or the disturbing the normal orientation of flight light reflected from
below [67,68]. Shimoda and Honda noticed the impact of light on insect behavior. It varies
both qualitatively and quantitatively. It also depends on the light source (either light bulb
or light-emitting diode (LED)) and material (i.e., light-reflecting plate) and demonstrated
the usage of various technologies to control pests. They concluded that LED devices with
various wavelengths have great potential in agricultural technology.

In modern light traps, all disclosed main principles work perfectly. White et al. [69]
described low-cost solutions for constructing “old-school” light traps using modern mate-
rials and devices. They constructed effective light traps using low-wavelength LED, soda
bottles, funnels, and rechargeable 9-V batteries. Another feature of modern light traps is
that researchers often combine them with cameras. Today, computer vision and machine
learning facilitate insect detection from images taken with such cameras. Modern screen-
based constructions are compact and approaching mass production [48]. Bjerge et al. [70]
presented a recent example of such a construction. The authors apply a computer vision
system to detect and classify live moths (Lepidoptera) using tracking and deep learning.
The following elements facilitate effective moth capturing:

• a UV fluorescent tube,
• a light table (white screen, sometimes sprinkled with sugar water),
• a light ring (to ensure a diffuse foreground illumination of the insects),
• a web camera,
• a Raspberry Pi 4 computer configured for computer vision software, and
• a motion detection system allowing effective resource spending.

The techniques metioned before utilize a typical construction of modern light traps
shown in Figure 1 right. Such screen-based systems represent the most simple solutions
used with cameras. In contrast to the “old-school” solutions described earlier (see Figure 1
left), novel systems have one clear disadvantage: they illuminate the light in one direction
(against the screen), which can lead to (according to the earlier mentioned findings) a
decrease in caught insects. This paper presents a possible solution for this problem; our
light trap prototype can illuminate the light in all directions.

Remote sensing approaches for insect monitoring are an alternative to sampling meth-
ods. Non-intrusive solutions with cameras for insect capturing are the closest remote
sensing method to the earlier discussed systems. For instance, Ruczyński et al. [71] de-
scribed a solution with a sky-oriented camera for nocturnal insect monitoring. These
cameras took pictures at 5-min intervals from sunset to sunrise, with only 10% of them
containing insects (a median number of 2). In contrast to the light-trap solutions, some
can notice that the described approach with sky-oriented cameras belongs to the remote
sensing realm (as well as unmanned-aerial-vehicle (UAV) cameras [72,73]).
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Researchers apply a broad spectrum of remote sensing solutions, which is not limited
to RGB cameras. Many works use radar technology, discussed in the next section. Fur-
thermore, lidar devices show promising potential in the high-resolution remote sensing
entomology [74–83]. Among recent works on lidar entomology, we want to mention the
two following articles [84,85]. The former discloses the high potential of lidar for insect
monitoring; for verification, the authors utilized a light trap setup nearby and demon-
strated the technology’s capability to distinguish different types of insects during flight
and quantify their movements. The authors illuminated Anopheles malaria mosquitoes
from different angles with linearly polarized near-infrared light; they concluded that
light scattered by insect wings could be separated from light scattered by insect bodies
due to the oscillatory wingbeats. In 2019, Brydegaard and Jansson [86] reviewed several
similar works.

Although lidar can be considered as a subset of the radar realm, we firmly separate
these technologies in the present article. In what follows, we do not consider lidar.

3. Insect Radar

Among all remote sensing methods, radar is the biggest and the most promising.
Insect radar has a long proven history and a great potential to fill the mentioned gaps
in state-of-the-art insect monitoring solutions. It allows systematic and global solutions
that address the main challenges of insect monitoring discussed in the introduction. De-
spite the long history, insect radar remains a growing topic with multiple challenges and
unsolved problems.

Insect radar has a history of about 70 years. It likely started from Crawford [87] and
was supplemented by other prominent works focused on individual insect detection [88,89],
the retrieval of size [90], wingbeat [91], density [92,93], airspeed-heading [92,94], and flight
duration and range [91]. Early research achievements have been summarized by Riley in
Reference [90]. Drake and Reynolds, in their well-known book on radar entomology [95],
have presented a systematic overview of insect radar applications and solutions before
2012. Since major publications and milestones were extensively discussed earlier in the
literature, we do not discuss them in detail.

Recent works continue to fill research gaps in equipment [96–98], reflectivity, and in-
sects’ geometrical characteristics [99–102]. As shown earlier, radar applications focus
on either biodiversity/conservation [103–107] or agriculture (economically important in-
sects [108–110] and pest management [21,111–116]).

Many recent works focus on new radar cross-section (RCS) information processing
methods. For instance, Kong et al. [117] have presented a systematic investigation on insect
cross sections in lab conditions; they conducted work with multiple frequencies and insect
species and concluded that the measurement results confirmed the established system’s
effectiveness and accuracy. Another recent article [102] introduced an approach to insect
mass estimation with support vector regression; the best-reached estimation accuracy of
insect mass in lab conditions was 78%. Wang et al. [118] proposed a new detection method
for maneuvering targets with small RCS; it was tested with many simulations and good
field experiments. In Reference [119], Alzaabi demonstrated computational electromagnetic
tools to predict radar scattering aerial insects’ (honeybees) characteristics and investigated
cross-section dependencies on multiple frequencies, polarizations, and viewing angles.

Often, radar studies group radar by the following frequency bands [120]:

• L-band (1–2 GHz, not utilized by insect radar),
• S-band (2–4 GHz),
• C-band (4–8 GHz),
• X-band (8–12 GHz),
• Ku-band (12–18 GHz), and
• Ka-band (26–40 GHz).

One can notice that many recent works consider Ku-band radar. Hu et al. [121]
analyzed RCS characteristics for data measured in the field by a Ku-band high-resolution
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insect radar. In Reference [122], researchers proposed a novel method for automatic
wing-beat frequency extraction for a Ku-band insect radar system (this set enables the high-
resolution full-polarized detection of insects, but it has not achieved automatic extraction
of the wing-beat frequency before). Cai et al. proposed an insect density estimation
approach [123] using insects’ traces and classification based on RCS and heights.

Various mathematical solutions are considered for the improvement of the radar
detection ability. For instance, Hu et al. [124] proposed using the second-order polynomial
approximation for the insects’ horizontal speed estimation for high resolution and full
polarization radar set. In Reference [125], the same research group has studied the invariant
target parameters of a small sample of insects and proposed two methods for body mass
and length calculation. In Reference [126], Fang et al. showed that gamma distribution
could fit the insect target’s RCS probability distribution and introduced an RCS feature-
aided tracking algorithm to improve the insect target tracking accuracy.

As in earlier work, signal polarization plays a vital role in modern insect radar re-
search. Mao et al. [127] discussed a novel fully polarimetric insect radar with high range
resolution for nocturnal migration monitoring. Moreover, they showed a technique for the
extraction of individual biological parameters from the echo signal. Distinguishing birds
and insects remains an essential challenge [128]; in Reference [129], the authors applied
a fuzzy logic algorithm to use the dual-polarization S-band radar exploiting mainly for
meteorological purposes.

Another significant aspect of recent research is the growing access to compact radar
devices. Zulkifli and Balleri [130] pointed out the urgent demand in nano-target-oriented
(less than 5 cm in size) radar solutions (e.g., for nano-drone [131] detection or pest manage-
ment). They have considered frequency-modulated continuous-wave (FMCW) radar as a
solution because it “can provide short-range detection, with no blind range and very high
resolution, at a relatively low cost.” The authors have designed and developed a 24 GHz
FMCW radar using off-the-shelf components and showed its feasibility.

All mentioned direction of recent research on insect radar is especially significant
in light of concerns regarding the insect abundance decline [132]. Satterfield et al. [133]
suggested further research and policy priorities to investigate and protect insect migrations
concerning the mobile insect population decline and behavioral shift. Similar concerns
motivated Stepanian et al. [104] for their work on the aquatic insect abundance decline in
North America using radar “at scales that have been previously impossible.” Moreover,
radar confirmed that the pest migration is under the severe impact of climate change [134].

Earlier works on insect radar clearly distinguish the following major groups: pulsed
scanning, vertical-looking, and harmonic radar. Moreover, pulsed and FMCW sets are
distinguished. The majority of insect radar system was based on pulsed radar, but FMCW
radar is becoming very popular today. Because of this fact, we pay special attention to
FMCW systems.

Further, we consider the main groups of insect radar and pay special attention to
recent publications and aspects that have not been intensively discussed in the literature.

3.1. Pulsed Scanning Radar

The history of insect radar has been started from pulsed scanning radar solutions.
Many notable works describe radar entomology’s achievements with scanning systems
worldwide and discuss their main challenges [135–141].

Many recent articles aim to find solutions to filter out insects’ effect on weather radar
data. For example, one of the concerns [142] is insects’ impact on Doppler radar wind
observations. Classical threshold-based filtering remains a popular technique for this.
Among novel solutions, machine learning approaches are becoming more popular [143].
Applying modern deep-learning algorithms enables the distinguishing of a tremendous
amount of insect information in weather radar data [144,145]. Since a vast amount of
weather radar data contaminated with biological echoes [128,146] is available, we can
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expect a very high trending interest in this topic in the future. This process is leveraged by
advances in big data processing and machine learning progress.

Pulsed scanning weather radar remains a mainstream technology for insect monitoring
using previous decades’ achievements and created radar networks [20,103,107,129,144,147–149].
This radar type has become a well developed solution.

3.2. Vertical-Looking Flight Observations

The vertical-looking radar (VLR) is another solution supplementing scanning systems
and facilitating the distinguishing of insect species since it can provide higher-detail
information (and, as a result, covers a much smaller area). Early vertical-looking radar
sets have been introduced in the 1990s for entomology purposes [150,151], including the
estimation of the population dynamics of migratory insect species [152,153], the impact of
insect groups [154,155], and outbreaks of pest species [156]. Since 1996, researchers have
started to apply the beam nutation [157] principle. It allows higher-precision altitudinal
and temporal insect dynamics monitoring [158].

There is one interesting fact that has not been explicitly discussed in the literature.
Observing papers on VLR published in the early 2000s, one can notice a “competition”
between the English and Australian schools on insect radar. Researchers from the UK have
actively promoted the “VLR” term, while Australian scientists have used an abbreviation
for zenith-pointing linear-polarized conical-scan (ZLC). Moreover, Australian researchers
proposed an abbreviation for their insect monitoring radar (IMR) and have actively used it
in the following publications. In contrast to “VLR”, the “ZLC” and “IMR” abbreviations
have not become popular outside the research group. In a collaborative review publication
led by English researchers [159], the “VLR” term played a central role, while “ZLC” and
“IMR” were not mentioned at all. In the later book [95] led by an Australian researcher,
authors have actively used all three abbreviations. The next three paragraphs discuss the
main milestones of this “competition.”

In Reference [160], Chapman et al. described a work conducted with a new VLR
system. The device had a linearly polarized and slightly oscillated (0.18◦offset around the
vertical axis) beam. The beam continuously rotated by mechanically turning the upward-
pointing wave-guide feed about the vertical. It should be noticed that, in contrast to
migrations observed with X-band scanning radar [161], vertical-looking radar can only
define a group of migrating insects’ flight headings since it covers a small area. The head-
ing is defined using the body orientation (alignment), displacement direction (however,
the displacement direction is largely determined by the wind direction), and displacement
speed of overflying migrants. Later, in Reference [162], the authors presented a systematic
investigation of insect aerial density’s vertical distribution in the atmosphere for multiple
temporal scales. They discussed, revealed by the radars, general features of insect stratifi-
cation and occasions during warm nights in the summer months. The authors emphasized
in the conclusions that nocturnal layering events are more important than it might seem
from their frequency of occurrence because they often occur at night, and are particularly
favorable to massive and sustained insect migrations.

Harman and Drake [163] published their approaches to VLR; they called it “zenith-
pointing linear-polarized conical-scan (ZLC) configuration.” The author proposed “a
relatively straightforward analytical method that uses the form of the ZLC scan to iso-
late signal components in the time-domain and that allows the parameters” (the target’s
trajectory (speed and direction), its orientation, and its character (size and shape)) “to be
estimated by a sequence of least-squares fits.” That was one of the first works where we
encountered the “IMR” abbreviation for “Insect Monitoring Radar.” At that time, “VLR”
and “ZLC”/“IMR” abbreviations applied in parallel to very close types of radar systems.
Later, the “VLR” abbreviation has become commonly used in insect radar, while “ZLC” is
not popular today.

We want to mention three synthesis papers related to the VLR and ZLC/IMR context.
An outstanding synthesis paper by Hobbs and Aldhous [164] summarized earlier harvested
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data [136,165]. In that paper, the authors do not use any of these abbreviations showing
their research neutrality. The data were collected using radar systems with a vertically
pointing linearly polarised beam (with the rotating plane of polarization about the vertical
axis at several Hertz offsetting from the vertical axis by about 10% of the beamwidth
and scanned around the vertical at the same rate) and marine X-band transceivers. This
work did not consider the wingbeat; the authors concluded that it could be a useful
extension for the future. In 2004, the Australian group [166] provided detailed results on
this topic (extending the previous finding on ZLC-radar presented in Reference [163]). They
gathered wingbeat parameters using rotary-mode signals in an additional (final) stage of
the data-processing procedure that routinely retrieves trajectory and target parameters
from an IMR’s conical-scan observations detailed in the previous work. The English group
presented their synthesis in Reference [162]. They discussed the insect aerial density’s
vertical distribution in the atmosphere. The researchers described occasions during warm
nights in the summer months when intense insect layers developed in the southern UK.

All these synthesis papers strictly positioned themselves regarding terminology, avoid-
ing a “competing” research group’s abbreviations. After 2005, both research groups worked
productively together. In Reference [167], they investigated the ventral-aspect radar cross
sections of insects. Ventral means that an insect is oriented with its underside directed to-
wards the beam. An insect data gathered with 9.4 GHz linear-polarization X band radar has
been analyzed to identify relationships between RCS parameters and the insects’ masses
and morphological dimensions and forms.

3.3. Low-Altitude Observations

All earlier discussed works belong to high-altitude flight observations using pulse
radar. Excluding particular rare conditions, the ground clutter makes it impossible to
detect low-altitude targets [168]. Harmonic radar resolves this problem using a diode
reflector [169,170]. A tiny electronic diode (tag) glued to the tracking target is used for
insect detection [171–175]; various tag designs have been developed [176,177].

In Reference [178], Psychoudakis et al. proposed a principally new type of
transponder—a modified Minkowski loop tag. It consists of two concentric fractal loops
for a radar unit transmitting a 5.9–6 GHz signal and detecting at the 11.8–12 GHz band.
The proposed planar geometry (bendable) tag design allowed improving harmonic con-
version efficiency; it had a smaller size (9.5 × 9.5 mm) than the earlier solutions and could
detect a tagged insect up to 58 m. Even though the transponder was designed for insects,
in that work, the authors, seemingly, did not test it with real insects and scheduled it for
future work.

One can mention the importance of research disclosing the tags’ impact on the insect
flight. Kim et al. addressed this issue in Reference [179]. The authors utilized a wire
dipole tag described in References [180,181]: “the total length of the tag was 9 mm with
a 1-mm-diameter loop at the pole and a 1 mm foot bent at 90◦”. Kim et al. noticed the
potential of the harmonic radar for three examined species; it showed a severe impact on
two insects at rest.

Harmonic radar keeps attracting the height attention of researchers proposing vari-
ous novel solutions. For instance, Hsu et al. [182] proposed the use of a pseudorandom
code principle in harmonic radar to achieve high sensitivity. Advances in harmonic radar
hardware and algorithms led to its in-production use for the insect behavior investigation.
For instance, in Reference [183], researchers tracked many Chinese citrus flies for several
years. They disclosed that early emerging adult insects migrate into forests. Kho et al. [184]
investigated two methods for insect tracking in the grass field and confirmed the harmonic
radar’s high efficiency. In Reference [185], Milanesio et al. presented a new harmonic radar
prototype with a detection range of 500 m for locating Asian hornet nests. A solution for
designing a 2.5/5 GHz harmonic radar for honey bee tracking was discussed in Refer-
ence [186]. Another design of a compact transponder for insect tracking was proposed in
References [187,188]. Such works confirm the effectiveness of this technology.
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3.4. Frequency Modulated Continuous Wave Radar

Most of the earlier mentioned works considered pulsed radar systems. As an alterna-
tive, frequency modulated continuous wave radar (FMCW) can be used for insect detection.
FMCW radar is a popular technique for investigating layers in the atmosphere [189–191].
One of the earliest works on FMCW radar for insect detection was published in 1973 [192].
In Reference [193], Gallagher et al. detected meteorological echoes contaminated and
obscured by echoes looking like the diurnal cycle of insect behavior. It has to be mentioned
that FMCW sets have not reached wide attention before 2000. Thus, compared to pulsed
sets, such systems have not been widely reviewed in the literature.

In Reference [194], Contreras and Frasier discussed the S-band FMCW mobile radar
exploitation results for one month in Oklahoma. This design allowed the authors to reach an
altitude of 2500 m. As in the work discussed in the previous paragraph, insects appeared as
discrete dots in the resulting charts. The authors assumed that these dot echoes are insects
(“assume to be insects”). Although they did not conduct experiments with artificially
placed insects and other targets, their assumptions look convincing since it corresponds to
independent findings in other works on insect radar. Furthermore, Contreras and Frasier
proposed a two-dimensional (5 × 5) median filter to isolate insects’ contributions, which
allowed for the distinguishing of target types.

In the last decade, several works proposed to apply FMCW radar to improve studies
conducted with pulsed systems. In Reference [195], Tahir and Brooker proposed harmonic
FMCW radar for tracking the insect. They noticed that, unlike pulse systems, FMCW radar
does not require high peak power to be transmitted for a linear frequency chirp; it receives
the second harmonic of a transmitted signal. Tahir and Brooker discussed UAV feasibility
for harmonic radar operating in the millimeter-wave band where component size and
weights are small. Tahir et al. continued the research in the next work [196], where they
mainly discussed the design of new, very compact transponders. In that work, they did
not have the goal to use FMCW radar with UAVs, but the authors showed the results
of exploiting FMCW harmonic radar and millimeter wave harmonic sensors. They have
noticed that “FMCW harmonic radar would meet the size and weight constraints for its
fixation on a mobile vehicle or UAV for the continuous tracking of migrating insects fitted
with harmonic sensors to beyond one km which is the maximum detection range achieved
by existing pulse radar.” The idea of UAV-borne FMCW harmonic radar rose again in
Reference [197], but as in the earlier discussed works, concrete prototypes have not been
shown. An actual UAV aimed version of the harmonic radar is described in Reference [198].

The FMCW principle is used in different types of insect radar. Yang et al. have
developed a VLR set using FMCW radar [199]. As discussed earlier, the pulsed X-band
radar covered altitudes from 150 to 1200 m, while the FMCW system aimed at targets up to
200 m, i.e., filling the gap from the ground to 150 m. The device uses the same principle
of observations as the pulsed VLR, i.e., the vertical-looking beam has an offset by a small
angle around the vertical axis by aligning the upward-pointing vector. The insect detection
results at 150 m height in the air look promising.

One can notice that FMCW systems are already utilized by vertical-looking and
harmonic solutions. We expect attempts to develop scanning systems using FMCW radar
in the future. Compactness and low energy consumption make such setups very promising.

3.5. Tendencies and Classification

To illustrate the scientific interest in insect radar, we have summarized the number
of relevant publications in time intervals. For this, we utilize the same approach used in
Reference [200]. We queried Google Scholar with the following search phrase: (“insect” or
“entomology”) and “radar”. Table 1 and Figure 2 show the number of publications aggregated
in five-year intervals starting from 1946–1950 and ending in 2016–2020; Figure 3 shows the
number of publications aggregated in a one-year interval starting from 2005.
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Table 1. Number of publications on insect radar according to Google Scholar.

Years (1946–2020) Amount Years (2005–2019) Amount

1946–1950 15 2005 113
1951–1955 16 2006 144
1956–1960 15 2007 152
1961–1965 22 2008 172
1966–1970 37 2009 205
1971–1975 49 2010 217
1976–1980 102 2011 237
1981–1985 119 2012 245
1986–1990 173 2013 251
1991–1995 215 2014 262
1996–2000 279 2015 270
2001–2005 502 2016 282
2006–2010 890 2017 316
2011–2015 1270 2018 311
2016–2020 1360 2019 331
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Figure 2. Number of publications on insect radar from 1946 to 2020 (five-year interval).

According to Table 1 and the figures, insect radar is a well-developed methodology
and an increasingly trending topic. It started from tens of publications a year and reached
hundreds in the 1980s. In 2011–2015, it exceeded 1000, remaining far above this level.
Of course, this process is also associated with a general trend of increasing the number
of publications caused by the rise of the Internet. Figure 3 proves that this topic remains
steadily growing because it shows the number of publications in recent years. It had been
nearly linearly grown from 113 in 2005 to 331 in 2019. In 2020, 102 published items were
already indexed.

In addition to radar research dynamics, it is necessary to figure out major radar
types, groups, and classification. In Reference [95], Drake and Reynolds considered radar
entomology from multiple viewpoints. They have distinguished radar sets by their config-
uration, observation type, and applications. For instance, short-, medium-, and long-range
entomological radars are recognized by transmission modes. Regarding the configuration,
scanning, profiling, and airborne radar sets are distinguished. In Reference [201], the au-
thors recognized the following radar types: airborne (AER), scanning (SER), tracking (TER),
and vertical-looking (VLR) entomological radar systems. In 2004, Chapman, Reynolds,
and Smith, in their review work [202], discussed two main groups of insect radar: vertical-
looking and tracking radar; tracking radar in this subdivision consisted of scanning and
harmonic systems. Later, in 2011, Chapman, Drake, and Reynolds [159] refined their earlier
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classification by distinguishing three main insect radar groups: scanning, vertical-looking,
and harmonic; moreover, they acknowledged the potential of FMCW systems.

2005 2007 2009 2011 2013 2015 2017 2019
100

150

200

250

300

350

Figure 3. Number of publications on insect radar from 2000 to 2020 (one-year interval).

We want to propose a simple classification of insect radar sets based on the last-
mentioned publications, taking into account the radar working principle. The two follow-
ing major radar groups are discussed in multiple references: pulsed and FMCW solutions.
These groups are imbalanced; much more work has been done on the pulsed radar. FMCW
is likely to be the leading solution in the future due to its compactness and cost. We
want to note that radar satellite imagery [203] and ground-penetrating radar [204] are out
of the scope in this classification (but both have a high potential for insect monitoring)
because such solutions observe insects indirectly (e.g., through canopy properties, insect
tunnels, etc.).

We propose a two-level classification of insect radar systems using the discussed ideas.
It is altered from the previous descriptions by acknowledging recent work on FMCW
systems. Our updated classification is reflected in Table 2 and Figure 4.

Scanning radar systems carry out small-scale observations and cover large areas. They
were under active development in the early stage of insect radar. Later, vertical-looking
approaches have become more popular because they allowed researchers to increase the
study scale and gather better-granulated data. Recently, harmonic radar enabling large-
scale research has become popular (but it can track only a single (or a few) insects equipped
with a tag, i.e., not suitable for mass monitoring). FMCW radar applications are becoming
very promising due to their compactness and low-energy consumption. Even though we
have not found any papers concerning the use of FMCW in a scanning mode, we can admit
that it is technically possible. Thus, one can see it as a significant gap and a good method
for new low-range radar prototypes. Such low-range systems can be utilized, for example,
for pest management in open agricultural fields.

Table 2. Insect radar groups and relevant sample publications (not a complete list).

Radar Orientation Pulsed FMCW

High-Altitude: Scanning
Large Areas [90,93,137–141]

High-Altitude: Vertically Ori-
ented (including VLR)

[135,150,151,157,158,160,163,
164,166] [192–194,199,205,206]

Low-Altitude: Harmonic [169,172–181,183] [178,182,195–197]
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Figure 4. Insect radar groups.

The FMCW principle allows small range observations. Further, we discuss some novel
ideas and solutions on insect radar derived from the provided literature review. In the
context of our future work, we consider the only compact small-range and energy-effective
solutions. One can point out that only the FMCW radar can meet our expectations.

To describe dynamics in insect radar research, we have prepared Table 3. It shows the
number of publications mentioning insect radar groups published in the two following
time intervals: all-time and a time interval since 2015. Moreover, the percentage of papers
published since 2015 is provided in the last rows of all sub-tables. We want to emphasize
the disproportion of the distinguished radar groups reflected by tables.

Table 3. Estimated numbers of publication mentioning relevant insect radar groups.

Pulsed FMCW Scanning Vertical Harmonic C-Band S-Band X-Band Ku-Band Ka-Band

All-time 5100 50 29,900 500 2890 440 210 290 20 30

Since 2015 1240 20 8331 140 1010 110 80 90 10 10

% since 2015 24 40 28 28 35 25 38 31 50 33

The lowest sub-table shows the number of publications mentioning radars of differ-
ent radar frequency bands [120], confirming the growing interest in compact low-range
systems. One can expect improvements in balancing the discussed insect radar groups
due to technical progress, advances in big data processing and machine learning, and the
growing demand for compact and resource-effective solutions that increase the popularity
of FMCW systems.

4. Future Work

Insect radar systems are becoming compact. Some authors have even mentioned their
intention to install novel compact radar devices on UAVs. We have noted a definite gap in
radar entomology: ranges from 0 to tens of meters are not covered with the existing systems.

Assembling both these findings, we have come up with an idea of two novel insect
radar setups. Due to a small range, it is problematic to encounter the significant insects’
biomass. Thus, for both setups, we use light traps. Moreover, for collecting ground truth
data, we intend to use cameras. Figure 5 left presents a 24 GHz FMCW radar device that
we use for both setups; preliminary estimations showed that insects could be detected with
this device. For instance, Figure 6 shows a time plot with the registered insect presence.

The first setup (see Figure 5) has a typical modern design consisting of an attracting
screen and a computing box with a camera. A camera connected to a Raspberry Pi computer
aims to a screen and uses computer vision algorithms to detect insects. The attracting screen
consists of an aluminum sheet, light diffuser, and UV lights. Radar should be installed
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between a camera box and the attracting screen. Thus, it can detect insects flying towards
the light. Radar does not play a key role in this configuration; it accompanies the camera.

Figure 5. (left) a radar device; (right) constructing light traps (work in progress).

Figure 6. History plot showing an insect (108–109 s).

The presented setup attracts the insect from the limited volume. Moreover, it is static,
aiming to be used in one place. To overcome these limitations, we propose a light trap
with radar installed on an unmanned ground vehicle (UGV, or rover). In such a setup,
radar plays a central role. Figure 7 illustrates our idea, i.e., installing radar surrounded
with UV light sources in the middle of the rover and covering it with a light diffuser. Since
the diffuser has a bowl shape, it can attract insects from a maximum volume. The night
camera is pointed at the light trap, while the day camera is pointed to the sky; this allows
full-day insect species tracking and detection. A key point in such an installation is radar.
It will be capable of estimating the insect biomass in a large volume around the setup.
Assembling radar and camera data will make it possible to collect information regarding
insect species, biomass, and dynamics. Prospectively, the rover can be programmed to drive
autonomously in the forest during the night along predefined paths. It will be equipped
with a camera to collect ground truth data. Additional sensors can facilitate other purposes
of the rover.
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Radar and light source

Figure 7. Insect radar and rover: (left) a concept; (right) a mockup installation with a rover, radar, and light trap.

Preliminary tests showed that these setups have high potential and should be devel-
oped further. Currently, only insect presence and biomass can be investigated. Due to
technological limitations, it is impossible to detect discrete insect targets. We can see insects
only as dynamic noise, which is why the camera plays a vital role in collecting ground
truth data.

The described 24 GHz radar device was designed to detect targets up to 20 m from
the radar. We can observe higher insect targets with another obtained instrument. Our
laboratory operates 94 GHz FMCW cloud radar (see Figure 8 left) for meteorological
purposes [207]. The radar site is located in Marburg Ground Truth and profiling station in
Linden-Leihgestern, Germany (50.533N, 8.685E, 172 AMSL). This radar provides a 10 m
spatial and a 10 s temporal resolution of cloud structure [208]. The radar can detect clouds
as low as 30 m [209]; it can detect targets to a height of at least 8 km.

Figure 8. (left) operating 94 GHz frequency-modulated continuous-wave (FMCW) cloud radar; (right) diurnal bioaerosol.

It is well known that such systems’ data comprise a large amount of insect clutter [210].
Researchers often describe this phenomenon as “bioaerosol” because it is a mixture of
insects and other bio-materials, such as pollen. Figure 8 right shows a profile of cloud
radar reflectivity for a cloud-free day. It illustrates a diurnal course of a signal, which
culminates around noon. This means that the “bioaerosol” is extended by increasing
thermal turbulence (the boundary layer is extending) and because the insects can fly higher
when it is warmer. While Luke et al. [210] have considered such a signal as a contaminant
and have tried to filter out it, this is target information for our future work.

Combining the described radar systems would allow us to conduct systematic multi-
scale insect monitoring. 24 GHz radar equipped with light trap allows low-altitude insect
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monitoring. 94 GHz cloud radar would aim for high-altitude insect flight information
gathering. Since both systems are compact and relatively inexpensive, prospectively, this
combination can be used to deploy network stations for insect monitoring. Moreover,
the setup with a rover shows a good perspective to collect large-scale spatial information
of the insect distribution.

5. Conclusions

The present article provides a review of works that show the potential to find a solution
for systematic and global insect monitoring to respond to the “Ecological Armageddon”
problem (discussed in the introduction). We indicated that insect traps and remote sensing
solutions are the two primary monitoring methods. In this work, we have discussed
essential approaches to insect monitoring.

Firstly, sampling methods comprising mainly various insect traps have been discussed.
Secondly, remote sensing approaches allowing non-intrusive insect monitoring have been
considered. It has been indicated that compaction and cost-effectiveness allow for the
wide use of remote sensing methods for insect monitoring. Recent solutions utilize various
cameras, UAVs, lidar, and other modern achievements.

Radar remains the most popular technique among remote sensing solutions. Pulsed-
scanning, vertical-looking, harmonic, and frequency-modulated continuous-wave (FMCW)
radar solutions are considered. Pulsed-scanning became popular in the 1980s; it covers
large areas around the setup, which is useful for massive insect migration observations.
Vertical-looking systems facilitate the collection of very detailed information about high-
altitude insect flights. Widespread harmonic radar is being designed to track individual
insects and work at low altitudes. Recent achievements in FMCW radar technology allow
for the production of compact devices, making it an up-and-coming system.

We have indicated a continually growing interest in insect radar, and it has been con-
firmed by the number of relevant papers published since the 1950s. Since 2005, the growth
has remained linear. We expect that the interests will be much higher due to recent tech-
nology achievements. Real-time and big data analytics, machine learning, compact and
low-cost sensors, and embedded systems support this growth today. Blockchain and
decentralized solutions are leveraging it in the near future.

Additionally, we have proposed an updated classification of insect radar systems.
Two large groups are pulsed and FMCW sets. Pulsed can be scanning, vertically oriented,
or harmonic. Vertically oriented and harmonic sets can also be considered a subset of
FMCW. The provided relevant references for each group illustrate this classification.

We have proposed novel radar setups with an FMCW radar system for the future.
Since the utilized radar is very compact, we will install it on a rover equipped with
multiple sensors and a light trap. We intend to run the rover autonomously in the forest to
collect comprehensive and continuous information about insects. Furthermore, we plan to
develop a static setup with radar and an attractive-screen-based light trap. Finally, to gather
multi-scale data, we will use 94 GHz cloud radar to observe insects at high altitudes.

We believe that the insect monitoring expectations discussed in the introduction can
be addressed in the near future. Today, the market proposes compact and cost-effective
solutions; with big data and machine learning achievements, monitoring can be organized
globally, continuously, and systematically. Intensive and collaborative work is required for
successful progress.
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